
Hybrid Transmitter

Ideal for 433.92 MHz Unlicensed Transmitters in Europe
Meets the Most Stringent European Remote–Control Regulations
Compact, Surface–Mount Case with <90mm² Footprint

The HX1000 is a miniature transmitter module that generates on—off keyed (OOK) modulation from an external digital encoder (not included). The carrier frequency is quartz, surface—acoustic—wave (SAW) stabilized, and output harmonics are suppressed by a SAW filter. The result is excellent performance in a simple—to—use, surface—mount device with a low external component count. The HX1000 is designed specifically for unlicensed remote—control and wireless security transmitters operating in Europe under ETSI I—ETS 300 220 and in Germany under FTZ 17 TR 2100.

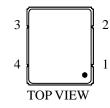
Electrical Characteristics

C	naracteristic	Sym	Notes	Minimum	Typical	Maximum	Units
Operating Frequency	Absolute Frequency	f_{O}	1, 2, 3, 4	433.720		434.120	MHz
	Tolerance from 433.720 MHz	Δf_{O}				±200	kHz
RF Output Power into 50 Ω at 25°C		PO	2, 4, 5	-3	0		dBm
	Within Specified Temperature Range		2, 3, 4, 5	-5	0		
Harmonic Spurious Emissions			2, 3, 4, 5		-52	-45	dBc
Modulation Input	Input HIGH Voltage	V_{IH}		2.5		V_{CC}	V
	Input LOW Voltage	$V_{\rm IL}$	3, 4, 5	0.0		0.3	
	Input HIGH Current	I _{IH}				100	μΑ
	Input LOW Current	I_{IL}		0.0			
Dynamic Input Resistance			5	18			kΩ
Data Timing Parameters	Modulation Bandwidth		3, 4, 5, 6		1		kHz
	Modulation Rise Time	t _R				100	μs
	Modulation Fall Time	t_{F}				100	
Power Supply	Voltage	V_{CC}	5, 7	2.7	3	3.3	VDC
	Peak Current	I_{CC}	3, 4, 5, 8		7	10	mA
	Standby Current	İ	5, 9			1.0	μΑ
Operating Case Temperature Range		T_{C}	5	-40		+85	°C
		•	•		•	•	•
Lid Symbolization (in addition to Lot and/or Date Codes).		0 0 0 0		RFN	M HX1000		

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

Notes:

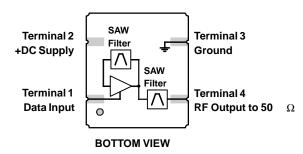
- 1. One or more of the following United States patents apply: 4,454,488; 4,616,197; 4,670,681; and 4,760,352.
- 2. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 3. Applies over the specified range of operating temperature.
- 4. Applies over the specified range of operating power supply voltage.
- 5. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 6. The maximum modulation bandwidth (and data rate) is dependent on the characteristics of the external encoding circuitry (not included).
- 7. Unless noted otherwise, case temperature $TC = +25^{\circ}C \pm 2^{\circ}C$, test load impedance = 50 Ω , and modulation input is at logic HIGH.
- 8. The maximum operating current occurs at the maximum specified power supply voltage and maximum specified operating temperature.
- Standby current is defined as the supply current consumed with the modulation input at logic LOW.


The HX Series SMT Hybrid Transmitters

Absolute Maximum Ratings

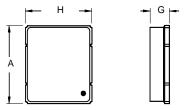
Rating		Units
Power Supply and/or Modulation Input Voltage	10	V
Nonoperating Case Temperature	-40 to +85	°C
Ten–Second Soldering Temperature	230	°C

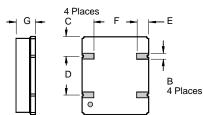
Electrical Connections


Terminal Number	Connections
1	Data Input
2	+DC Supply
3	Grounf
4	RF Output to 50Ω

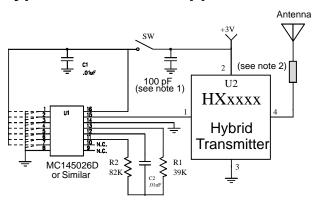
Footprint

Block Diagram




Typical Test Circuit

*Note: Bypass required only for "HX2..." series transmitters in the 902 to 928 MHz band.


Case Design

Dimensions	Millin Min	ieters Max	Incl Min	nes Max
A		10.67		0.420
В	1.27 Nominal		0.050 Nominal	
С	2.67 Nominal		0.105 Nominal	
D	5.08 Nominal		0.200 Nominal	
Е	1.70 Nominal		0.067 Nominal	
F	5.36 Nominal		0.211 Nominal	
G		2.80		0.110
Н		9.02		0.355

Typical Transmitter Application

Notes:

- 1. Bypass required only for "HX2..." series transmitters in the 902 to 928 MHz band.
- This matching component is required only for antennas that are not 50 ohms. It is typically a chip inductor to match to stub antennas shorter than 1/4 wavelength. For very low radiated field-strength applications, a resistor can also be used.

RF Monolithics, Inc. RFM Europe Sales 4347 Sigma Road, Dallas, Texas 75244, U.S.A. 18 allée Marin la Meslée, 78560 Port Marly, FRANCE Phone: (972) 233–2903 Fax: (972) 387–8148 Phone: (33–0) (1) 39.16.42.89 Fax: (33–0) (1) 39.16.42.70 Revision: 10/21/96. Page: 2 of 2

Printed in U.S.A. 0.05C-04/25/97.